Package com.rapidminer.operator.RatingPrediction

Source Code of com.rapidminer.operator.RatingPrediction.ItemAttributeKnnO

package com.rapidminer.operator.RatingPrediction;

import java.util.List;
import com.rapidminer.data.EntityMapping;
import com.rapidminer.data.IEntityMapping;
import com.rapidminer.data.IRatings;
import com.rapidminer.data.Ratings;
import com.rapidminer.data.SparseBooleanMatrix;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.AttributeRole;
import com.rapidminer.example.Attributes;
import com.rapidminer.example.Example;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.UserError;
import com.rapidminer.operator.ports.InputPort;
import com.rapidminer.operator.ports.OutputPort;
import com.rapidminer.operator.ports.metadata.ExampleSetPassThroughRule;
import com.rapidminer.operator.ports.metadata.ExampleSetPrecondition;
import com.rapidminer.operator.ports.metadata.GenerateNewMDRule;
import com.rapidminer.operator.ports.metadata.MetaData;
import com.rapidminer.operator.ports.metadata.SetRelation;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeDouble;
import com.rapidminer.parameter.ParameterTypeInt;
import com.rapidminer.tools.Ontology;


/**
* ItemAttributeKnn operator for Rating Prediction
*
* @see com.rapidminer.operator.RatingPrediction.ItemAttributeKnnO
* @see com.rapidminer.operator.RatingPrediction.ItemAttributeKnn
*
* @author Matej Mihelcic (Ru�er Bo�kovi� Institute)
*/

public class ItemAttributeKnnO extends Operator {

    public static final String PARAMETER_K = "k";
    public static final String PARAMETER_Min="Min Rating";
    public static final String PARAMETER_Range="Range";
    public static final String PARAMETER_REGU="reg_u";
    public static final String PARAMETER_REGI="reg_i";
   
    private InputPort exampleSetInput = getInputPorts().createPort("example set");
    private InputPort exampleSetInput1=getInputPorts().createPort("item attributes");
    private OutputPort exampleSetOutput1 = getOutputPorts().createPort("Model");
    private OutputPort exampleSetOutput = getOutputPorts().createPort("example set");

   
   
    public List<ParameterType> getParameterTypes() {
       List<ParameterType> types = super.getParameterTypes();
       types.add(new ParameterTypeInt(PARAMETER_K, "The used number of nearest neighbors. Range: integer; 1-+?; default: 80", 1, Integer.MAX_VALUE, 80, false));
       types.add(new ParameterTypeInt(PARAMETER_Min, "Value of minimal rating value. Range: integer; 0-+?; default: 1", 0, Integer.MAX_VALUE, 1, false));
       types.add(new ParameterTypeInt(PARAMETER_Range, "Range of possible rating values.  Range: integer; 1-+?; default: 4 ; Max Rating=Min Rating+Range;", 1, Integer.MAX_VALUE, 4, false));
       types.add(new ParameterTypeDouble(PARAMETER_REGU, "Regularization parameter for user biases.  Range: double; 0-+?; default: 10 ;", 0, Double.MAX_VALUE, 10, true));
       types.add(new ParameterTypeDouble(PARAMETER_REGI, "Regularization parameter for item biases.  Range: double; 0-+?; default: 5 ;", 0, Double.MAX_VALUE, 5, true));
       return types;
       }
   
    /**
     * Constructor
     */
    public ItemAttributeKnnO(OperatorDescription description) {
      super(description);

      exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "user identification", Ontology.ATTRIBUTE_VALUE));
      exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "item identification", Ontology.ATTRIBUTE_VALUE));
      exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "label", Ontology.ATTRIBUTE_VALUE));
     
      getTransformer().addRule(new ExampleSetPassThroughRule(exampleSetInput, exampleSetOutput, SetRelation.EQUAL) {
      });
     
      getTransformer().addRule(new GenerateNewMDRule(exampleSetOutput1, new MetaData(RatingPredictor.class)) {
              
       });
     
      exampleSetInput1.addPrecondition(new ExampleSetPrecondition(exampleSetInput1, "item identification", Ontology.ATTRIBUTE_VALUE));
      exampleSetInput1.addPrecondition(new ExampleSetPrecondition(exampleSetInput1, "attribute identification", Ontology.ATTRIBUTE_VALUE));
    }

    @Override
    public void doWork() throws OperatorException {
     
      ExampleSet exampleSet = exampleSetInput.getData();
         
          IEntityMapping user_mapping=new EntityMapping();
          IEntityMapping item_mapping=new EntityMapping();
          IRatings training_data=new Ratings();
         
           if (exampleSet.getAttributes().getSpecial("user identification") == null) {
                    throw new UserError(this,105);
                }
           
           if (exampleSet.getAttributes().getSpecial("item identification") == null) {
                    throw new UserError(this, 105);
                }
          
           if (exampleSet.getAttributes().getLabel() == null) {
                    throw new UserError(this, 105);
                }
          
           Attributes Att = exampleSet.getAttributes();
           AttributeRole ur=Att.getRole("user identification");
           Attribute u=ur.getAttribute();
           AttributeRole ir=Att.getRole("item identification");
           Attribute i=ir.getAttribute();
           Attribute ui=Att.getLabel();
         

          for (Example example : exampleSet) {
           
            double j=example.getValue(u);
            int uid=user_mapping.ToInternalID((int) j);
           
            j=example.getValue(i);
            int iid=item_mapping.ToInternalID((int) j);

            double r=example.getValue(ui);
            training_data.Add(uid, iid, r);
           
          }
         
         
          ExampleSet attribute_set=exampleSetInput1.getData();
         
          if (attribute_set.getAttributes().getSpecial("item identification") == null) {
                  throw new UserError(this,105);
              }
         
            if (attribute_set.getAttributes().getSpecial("attribute identification") == null) {
                  throw new UserError(this, 105);
              }
        
         
          Attributes aatr = attribute_set.getAttributes();
          AttributeRole ar=aatr.getRole("attribute identification");
          Attribute at=ar.getAttribute();
          ir=aatr.getRole("item identification");
          i=ir.getAttribute();
         
          SparseBooleanMatrix mat=new SparseBooleanMatrix();
       
         
            for (Example example : attribute_set) {
           
            double j;

            j=example.getValue(i);
            int iid=item_mapping.ToInternalID((int) j);
           
            j=example.getValue(at);
            int aid=(int)j;
            mat.setLocation(iid, aid, true);
          }
         
            System.out.println();
           System.out.println(training_data.GetMaxItemID()+" "+training_data.GetMaxUserID());
          
           ItemAttributeKnn recommendAlg=new ItemAttributeKnn();
         
          
           int K=getParameterAsInt("k");
           double regU=getParameterAsDouble("reg_u");
           recommendAlg.RegU=regU;
           double regI=getParameterAsDouble("reg_i");
           recommendAlg.RegI=regI;
           recommendAlg.user_mapping=user_mapping;
           recommendAlg.item_mapping=item_mapping;
           recommendAlg.SetK(K);
           recommendAlg.SetMinRating(getParameterAsInt("Min Rating"));
           recommendAlg.SetMaxRating(recommendAlg.GetMinRating()+getParameterAsInt("Range"));
          
           recommendAlg.SetRatings(training_data);
           recommendAlg.SetItemAttributes(mat);
         
           recommendAlg.Train();
          
          exampleSetOutput.deliver(exampleSet);
          exampleSetOutput1.deliver(recommendAlg);
          }
    }
TOP

Related Classes of com.rapidminer.operator.RatingPrediction.ItemAttributeKnnO

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.